Skip to content

代码随想录

数组

977.有序数组的平方

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

示例 1: 输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]

示例 2: 输入:nums = [-7,-3,2,3,11] 输出:[4,9,9,49,121]

解:

双指针

img

class Solution 
{
    public:
        vector<int> sortedSquares(vector<int>& nums) 
        {
            int leftIndex = 0, rightIndex = nums.size()-1;
            vector<int> res(nums.size(), 0);

            int k = res.size()-1;
            for(; leftIndex <= rightIndex;)
            {
                if(nums[leftIndex]*nums[leftIndex] < nums[rightIndex]*nums[rightIndex])
                {
                    res[k--] = nums[rightIndex]*nums[rightIndex];
                    rightIndex--;
                }
                else
                {
                    res[k--] = nums[leftIndex]*nums[leftIndex];
                    leftIndex++;
                }
            }
            return res;
        }
};

209.长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。

示例:

输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。

解:

滑动窗口

209.长度最小的子数组

class Solution 
{
    public:
        int minSubArrayLen(int target, vector<int>& nums) 
        {
            int result = INT32_MAX;

            int sum = 0, j = 0;
            int windowSize = 0;
            for(int i = 0; i < nums.size(); i++)
            {
                sum += nums[i];
                while(sum >= target)
                {
                    windowSize = i - j + 1;
                    result = result < windowSize? result : windowSize;
                    sum = sum - nums[j++];
                }
            }

            if(result == INT32_MAX) return 0;

            return result;
        }
};

59.螺旋矩阵II

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
        int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
        int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
        int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
        int count = 1; // 用来给矩阵中每一个空格赋值
        int offset = 1; // 每一圈循环,需要控制每一条边遍历的长度
        int i,j;
        while (loop --) {
            i = startx;
            j = starty;

            // 下面开始的四个for就是模拟转了一圈
            // 模拟填充上行从左到右(左闭右开)
            for (j = starty; j < starty + n - offset; j++) {
                res[startx][j] = count++;
            }
            // 模拟填充右列从上到下(左闭右开)
            for (i = startx; i < startx + n - offset; i++) {
                res[i][j] = count++;
            }
            // 模拟填充下行从右到左(左闭右开)
            for (; j > starty; j--) {
                res[i][j] = count++;
            }
            // 模拟填充左列从下到上(左闭右开)
            for (; i > startx; i--) {
                res[i][j] = count++;
            }

            // 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
            startx++;
            starty++;

            // offset 控制每一圈里每一条边遍历的长度
            offset += 2;
        }

        // 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
        if (n % 2) {
            res[mid][mid] = count;
        }
        return res;
    }
};

动态规划

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,

背包问题

例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。所以贪心解决不了动态规划的问题。

大家知道动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。

解题步骤

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

斐波那契数列

class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        int dp[2];
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            int sum = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = sum;
        }
        return dp[1];
    }
};

爬楼梯

// 版本一
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
        vector<int> dp(n + 1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) { // 注意i是从3开始的
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

// 版本二
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n;
        int dp[3];
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            int sum = dp[1] + dp[2];
            dp[1] = dp[2];
            dp[2] = sum;
        }
        return dp[2];
    }
};

62.不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

img

class Solution 
{
    public:
        int uniquePaths(int m, int n) 
        {   
            vector<vector<int>> dp(m, vector<int>(n, 0));

            for(int i = 0; i < m; i++) dp[i][0] = 1;
            for(int j = 0; j < n; j++) dp[0][j] = 1;

            for(int i = 1; i < m; i++)
            {
                for(int j = 1; j < n; j++)
                {
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
            return dp[m-1][n-1];
        }
};

63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) 
    {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>> dp(m, vector<int>(n, 0));

        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

        for (int i = 1; i < m; i++) 
        {
            for (int j = 1; j < n; j++) 
            {
                if (obstacleGrid[i][j] == 1) continue;

                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

01背包问题

动态规划-背包问题1

1、确定下标的含义

2、确定递推公式

3、初始化dp数组

int bagProblem()
{
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;

    vector<vector<int>> dp(weight.size(), vector<int>(bagWeight + 1, 0));

    for(int j = weight[0]; j <= bagWeight; j++)
    {
        dp[0][j] = value[0];
    }

    for(int i = 1; i < weight.size(); i++)
    {
        for(int j = 0; j <= bagWeight; j++)
        {
            if(j < weight[i]) dp[i][j] = dp[i-1][j];
            else dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i]);
        }
    }

    return dp[weight.size()-1][bagweight];
}

回溯法

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

回溯法解决的问题都可以抽象为树形结构,因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}